What is the Price of Standing Still?

What if we don't change at all and something magical just happens? Technical equation for entropy

“We have always done it this way.” No longer simply a hated phrase, this statement is a warning of impending disaster. Entropy – the disorder that happens when energy disperses and systems simply fall into chaos – happens when things do not change. But it’s a slow process you don’t see day-to-day. Continuing with traditional “build and break” development methods instead of embracing CAE and simulation has many long-term risks but it will only be after stagnating for some time that rubber parts manufacturing firms, and even the entire rubber industry, will realize the pitfalls:

Talent Loss
People are the key to it all and we start here since intelligent, hard-working, productive people are the fundamental reason any business succeeds. When the best and brightest employees leave a company, the fundamental reasons often include the lack of opportunity, learning, and career development. When not allowed to work with emerging technologies and are no longer challenged to grow, top performers find new opportunities taking not only raw potential but also institutional memory with them. And if they don’t see the industry as a viable long-term option, switching companies can also mean leaving the sector completely.

Warranty Issues/Payouts
Liability issues arise when product usage, applications and environments bring risks that may not have been factored in to the original designs and/or production methods. Traditional testing methods cannot be used to investigate “what if?” scenarios the way CAE and simulation can. Recalls and litigation can be significantly more costly than new technology implementations.

Lost Opportunity Costs
While harder to measure than fixed and variable business costs, there is an expense to every choice known as opportunity cost. Refusing to enter a new business sector may result in significant loss of revenue and profit. Taking on a big client project may strain production capabilities. “Standing still” eliminates those risks, but at what potential gain? As the rubber industry wrestles to “go green” we are all weighing and measuring the opportunity costs involved. The real lost opportunity is in refusing to embrace a fundamentally better design platform.

Incompatibility or Obsolescence
At some point, everything being produced right now will become obsolete. Even if you produce the best “widgets” anywhere, the environment around that “widget” will change and will no longer be needed in its current form. The rubber industry standard procedure of building a product then breaking it in physical testing to determine the next design rendition is incompatible with the time available for new product development. It just does not work anymore.

How quickly your business can adapt to or anticipate change is a key factor in continued success. The reasons companies do not make continued progress often include:

Change is expensive
Investments in training, new production systems, updated software and computers add up, but these numbers are not insurmountable when factored against the ongoing and often increasing costs of waste, repairs and downtime associated with outdated systems and equipment.

Learning new technology is time-consuming
Remember when you were thinking about going to college and four (6-8-10) years seemed like FOREVER? What was your ROI? What will it be now? Time invested in learning reaps many rewards beyond the subject at hand and often provides renewed overall energy.

The status quo works
For today, yes. For a brighter future for you company and the industry, NO. Companies that don’t evolve face certain death. Day-to-day operations may appear stable, but firms who do not keep up with technology do not stay in business. Covid forced many to embrace technology in new ways and those firms continuing to provide progressive working arrangements are gathering more than their fair share of the best and brightest talent. Enabling people to work beyond traditional geographic boundaries requires accountability and processes for measuring valued contributions rather than simply time at a desk.  Firms embracing CAE and simulation technologies have realized this and are at the top of the leading rubber industry rankings.

 Six reasons to adopt Endurica workflows

  1. Technically superior (click for details)
  2. Save big on development out of pocket costs (click for details)
  3. Reduce the need for physical testing (see page 2, blue box on right)
  4. Speed to market (able to use the tools immediately)
  5. Accuracy in meeting client needs (click for details)
  6. Easier answers down the road (click for details)
twitterlinkedinmail

The 5-50-500 Rule

The 5, 50, 500 Rule with dice showing Chance to Change

2 Minute Read | 400 Words

I ran a marketing consulting business for 30 years before joining Endurica and tried to save clients from learning the hard way. When brochures were the only way to convey a company’s message (pre-internet), it was critical that people understood the $5, $50, $500 rule.

  • $5 = cost for changes during the earliest design phase. This is the point where everything is on the table as you develop the look, feel, message, and content of the brochure.
  • $50 = cost to make changes at the first mock-up of the brochure. No big deal. At this stage, changes take a bit of work and may impact multiple pages or sections – but it’s a LOT better to make changes now than later and I encouraged people to speak up about anything/everything because change was still pretty easy. Approval at this stage sends us into production.
  • $500 = cost to make changes after we sent the brochure to the printer. That’s the cost to change even one LETTER, let alone a photo or – heaven forbid – an entire page. It was at this point that one client said “ok, now I’ll read it” and I had to stop myself from throwing a file at him.

All of this came up as we talked about the value of our software in rubber product development. The concept’s the same but the numbers are SO MUCH BIGGER. “Add about 3 zeroes to each of those steps,” remarked Tom Ebbott, Endurica’s VP and newest team member. “It’s the same concept in tire development but the impact is just so much bigger.

From a technical side, one of our client’s says it best: “In optimizing a geometry to extend the fatigue life of a product I ran a few iterations of inner-cavity geometries, and found one specific geometry with Endurica that achieved 500,000 cycles to failure in contrast to the 30,000 I had before. It’s more than a 10-time improvement and that’s really significant. These concrete numbers are really powerful in helping us and our customers to make good decisions.” Francois Rouillard, R&D Mechanical Engineer, Maestral Sealing Laboratory, Technetics, Pierrelatte, France.

WHY IT MATTERS: Endurica’s users find THE BEST solution to their client’s problem early — at the $5,000 stage of design. They can skip the multiple iterations that easily run $50,000 each and go right into the $500,000 production testing cycle with complete trust in the product’s success.

twitterlinkedinmail

So This Happened on the Show Floor at IEC2019

Convention Floor

“I tell my suppliers to use you all the time.”  – Exact words from an engineer in charge of purchasing key components for a major automaker when he stopped by our booth at the International Elastomers Conference in Cleveland.

“Not all of them listen and there’s one I really wish would hear me. They tell me ‘there is no money for more software and testing’. But we use your software internally and we KNOW it can help them. This supplier has been working on a bushing for us for over a year and they still can’t hit our requirements.”

He went on to tell me how the supplier’s current design is not sufficiently evolved. How it is too risky. How it might compromise vehicle performance.  How he can’t take chances.  How he sure wished they would hear what he’s been saying because he really doesn’t want to pull their business and go to another source but he is running out of time. “I can’t wait much longer.”

“We could use your tools, but profits are measured in pennies. Rubber is a tough industry with low margins and high competition.”  – Exact words spoken probably 15 minutes later from an engineer with a major Tier 2 supplier. This fellow went on to lament how he just had equipment moved out of his facility to another division after losing a contract with a big customer.  “Corporate” decided the equipment would be better utilized elsewhere.  “It’s hard for us to bring in new technology unless our customers will pay for it.”

“Look at the ROI.” – Exact words from Endurica’s president as we were discussing these conversations after the show.  We give out 100 Grand bars at our booth to kick start this kind of conversation, but there is easily more than $100,000/year at stake.  Have you ever calculated your development costs? What if you had durability right the first time, every time? Here is a typical scenario – you can put in your own numbers.  This isn’t the only way to estimate the ROI.  You could also come at it like we did here, or here.

Traditional Development Process With Endurica
Compound Selection 2 months + $20,000 Same
Product Design 2 months + $20,000 3 months + $30,000
Mold and Tooling 6 months + $50,000 Same
Prototype Production 3 months + $25,000 Same
Component Testing 3 months + $25,000 Same
Fleet/Field Testing 12 months + $100,000 Same
Regulatory Compliance 1 month + $10,000 Same
Sub-total, Per Iteration Cost 12 months + $250,000 12 months + $260,000
Development iterations per project launch 2x Right the first time
Total Cost 24 months + $500,000 12 months + $260,000
Savings with Endurica,
per product launch
12 months + $240,000

 Cost of Qualifying Fatigue Performance | 100 Grand

twitterlinkedinmail

It sounds like magic but it’s really advanced science and technology

Endurica's simulation calculates the fatigue life of rubber

When people ask me what Endurica does I tell them: You give us a computer file of one full use cycle of your design – be it a tire design or one rotation of a pump that you’re building a seal for – along with a sample of the rubber you’re making the product of and Endurica will tell you when it will break and where. There are many companies who can do that for metals but we’re the only ones who have figured it out for rubber. It all started with our founder’s Ph.D. work in mechanical engineering and his years in tire design. We actually have more clients outside of the U.S. than in, and our non-disclosure agreements don’t allow us to share names but some of the clients who have published technical papers using our software include General Motors, Caterpillar and Tenneco.

I’ve learned that over-engineering seems to be the status quo in the rubber industry. Because Endurica’s methods aren’t as well-known as we would like, many companies do things the way they always have: test the rubber part for a lifetime of use at the most intense conditions to ensure it fails LONG past the time it could ever be used. That build-and-break routine is so embedded in the industry it led to an interesting insight from an engineer who stopped by our booth at a recent conference.

 We don’t have time to do it right, but we do have time to do it over.
     – 2019 SAE World Congress Event Attendee

It seems the company they worked for budgets for five to seven full development cycles (design, build, test to breaking point. Re-design; build…..) I’m told that in the tire industry each round of this process  easily tops $50,000 when you factor in the engineering time, breaks in actual production schedules for samples to be made, plus months in physical testing. It seems that because many do not understand Endurica’s processes and the foundational science/engineering/technology behind it they continue with the accepted norm of “make and break” even though it costs them hundreds of thousands of dollars annually.

To prevent failure how much do YOU plan to fail?

If that is too strong of a question let me ask it this way: How many design cycles do you have in the budget this year? Simulation is a powerful tool in design and if you are designing on computer already, adding Endurica’s methods to your simulations is the next logical step to, as we say, Get Durability Right.

Consider using the same design budget you already have but replace just one “round” of traditional design with the purchase of Endurica’s training and a software license. By adding our software to your simulation design system (Abaqus, ANSYS or MSC/Marc)  you can have results within HOURS (not the months of traditional testing) for the durability of each version of your product design. Envision the impact this technology could have on your firm: reduced time to market; greater design flexibility, increased profitability; reduced costs in both engineering and production…

If there was a better way, would you take it?

Endurica does not advocate that you go directly from simulation to production. We simply make it easier for you to do MANY design cycles to get the best design possible before you do actual FEA testing on the best possible option. Maybe it’s time to reconsider your budget for design cycles, and factor in budget money for both the training to thoroughly understand the science behind Endurica’s methods as well as the software which will enable you to have INFINITELY MORE design iterations for the same overall budget. It isn’t magic but it is pretty advanced science and technology. Let’s talk.

twitterlinkedinmail
close
Trial License RequestTrial License RequestTrial License RequestTrial License RequestTrial License Request

Our website uses cookies. By agreeing, you accept the use of cookies in accordance with our cookie policy.  Continued use of our website automatically accepts our terms. Privacy Center