Elastomer Fatigue Property Mapping – Characterization Service

Fatigue of elastomers is governed by many factors. The Fatigue Property Mapping™ family of characterization protocols systematically inventories these factors. The result is a set of engineering parameters that can be used with durability simulation codes, such as Endurica CL™ and fe-safe/rubber™, to determine how fatigue performance depends on the complex conditions that are encountered by a part in service. The protocols are organized into a set of Modules, with each Module focused on a typical design/analysis task, so that it is easy to select which protocols are needed in a given program.

- **Hyperelastic Module**: Simple, Planar, and Equibiaxial tension, Mullins Effect
- **Core Fatigue Module**: Fully Relaxing Behavior from both nucleation and fracture mechanical perspectives
- **Intrinsic Strength (>10^6 cycles) Module**: Quantify endurance limits
- **Nonrelaxing Module**: Quantify Strain Crystallization, Min and Mean Strain Effects
- **Extended Life (>10^6 cycles) Module**: Quantify endurance limit, estimate aging rate of stiffness, intrinsic and ultimate strength
- **Thermal Module**: Quantify dissipative properties, thermal properties, temperature dependence
- **Creep Module**: Quantify Creep Crack Growth Rate Effects
- **Cyclic Softening Module**: Quantify Cyclic Softening Effects

Follow the instructions in this document to place your order and submit your material(s) for characterization.

www.endurica.com
Fatigue Property Map Prices

August 2016. Pricing subject to change.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPM-C</td>
<td>Elastomer Fatigue Property Map – Core Module</td>
<td>$7,750</td>
</tr>
<tr>
<td></td>
<td>Required for all fatigue analyses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User specifies one temperature between -40°C and 175°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fully relaxing ($R = 0$) conditions for all fatigue tests</td>
<td></td>
</tr>
<tr>
<td>Experiments</td>
<td>static tearing raw data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fatigue crack growth raw data (20 hour procedure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>monotonic tensile to failure raw data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cycles to failure tensile raw data, 2 strain levels</td>
<td></td>
</tr>
<tr>
<td>Analysis and Reporting</td>
<td>critical tearing energy T_c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tensile strain, stress, energy at break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fatigue crack growth rate curve and its parameters (r_c and F)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crack precursor size c_0 calculation and sensitivity analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>strain-life, stress-life, and energy-life fatigue curves</td>
<td></td>
</tr>
<tr>
<td>FPM-IS</td>
<td>Elastomer Fatigue Property Map – Intrinsic Strength Module</td>
<td>$2,445</td>
</tr>
<tr>
<td></td>
<td>Recommended for cases with fatigue life longer than 10^6 cycles</td>
<td></td>
</tr>
<tr>
<td>Experiments</td>
<td>cutting force raw data, 3 strain levels</td>
<td></td>
</tr>
<tr>
<td>Analysis and Reporting</td>
<td>cutting vs. tearing curve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intrinsic strength T_0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fatigue threshold strain, stress, energy (if ordered with FPM-C)</td>
<td></td>
</tr>
<tr>
<td>FPM-EL</td>
<td>Elastomer Fatigue Property Map – Extended Life Module</td>
<td>$22,495</td>
</tr>
<tr>
<td></td>
<td>Recommended for cases with fatigue life longer than 10^6 cycles, and when ageing must be taken into account. Note: It is required to run FPM-IS in order to run this Module.</td>
<td></td>
</tr>
<tr>
<td>Experiments</td>
<td>ageing in oven at 3 temperatures for 3 time periods: 3 days, 10 days, 30 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>static tearing raw data, 3 ageing periods x 3 ageing temperatures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cutting force raw data, 3 strain levels x 3 ageing periods x 3 ageing temperatures</td>
<td></td>
</tr>
<tr>
<td>Analysis and Reporting</td>
<td>cutting vs. tearing curve at each aged condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intrinsic strength T_0 vs. ageing curve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tearing energy T_c vs. ageing curve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fatigue threshold strain, stress, energy vs. ageing curves (when ordered with FPM-C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>parameters specifying ageing time and temperature dependence of T_0 and T_c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>extrapolation of ageing effects to longer timescales for an application-specific temperature</td>
<td></td>
</tr>
</tbody>
</table>
FPM-NR Elastomer Fatigue Property Map – Non-relaxing Module

- Recommended for cases where fatigue loading is never fully relieved to zero
- one temperature between -40°C and 150°C
- test is run under a range of nonrelaxing \((R > 0)\) conditions
- Note: It is required to run FPM-C in order to run this Module.

Deliverables

Experiments
- raw data from fatigue crack growth arrest procedure with minimum strain sweep

Analysis and Reporting
- strain crystallization functions \(F(R)\) and \(J(R)\)
- Haigh diagram showing sensitivity to minimum strain of crack nucleation life

Price: $3,000

FPM-TH Elastomer Fatigue Property Map – Thermal Extension Module

- Recommended for cases involving significant self-heating, thermal expansion, or thermal gradients
- User specifies three additional (to FPM-C) temperatures between -40°C & 150°C
- Note: It is required to run FPM-C in order to run this Module.

Deliverables

Experiments
- static tearing raw data at 3 temperatures
- cyclic stress strain raw data at room temperature + 3 other temperatures
- thermal conductivity, specific heat & density measurements
- thermal expansion measurement

Analysis and Reporting
- heat generation law parameters describing dependence of hysteresis on strain and temperature
- tear strength vs. temperature
- fatigue crack growth rate law
- temperature sensitivity coefficient
- coefficient of thermal expansion

Price: $12,325

FPM-CCG Elastomer Fatigue Property Map – Creep Crack Growth Module

- Recommended for cases involving long periods under static load
- User specifies one temperature between -40°C and 175°C

Deliverables

Experiments
- raw data from quasistatic creep crack growth procedure

Analysis and Reporting
- Creep crack growth rate curve and its parameters \((T_q, r_q, \text{ and } F_q)\)

Price: $1,615

FPM-S Elastomer Fatigue Property Map – Cyclic Softening Module

- Recommended for cases where stiffness degradation limits durability
- User specifies one temperature between -40°C and 175°C

Deliverables

Experiments
- raw data from cyclic softening procedure on simple tension strips at 5 strain levels

Analysis and Reporting
- Family of cyclic softening curves showing stiffness degradation rate as a function of life consumed
- Curve fit to cyclic softening model

Price: $2,845
<table>
<thead>
<tr>
<th>FPM-H23</th>
<th>Elastomer Fatigue Property Map – Hyperelastic Module (23°C)</th>
<th>$1,905</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Required as a prerequisite to Finite Element Analysis, lab ambient temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• simple tension, slow cyclic loading, raw data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• planar tension, slow cyclic loading, raw data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• biaxial tension, slow cyclic loading, raw data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis and Reporting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identification of a suitable hyperelastic function and parameters for FEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identification of parameters for specifying Mullins effect in ABAQUS or ANSYS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FPM-HX</th>
<th>Elastomer Fatigue Property Map – Hyperelastic Module (-40°C < T < 150°C)</th>
<th>$2,585</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Required as a prerequisite to Finite Element Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• one temperature between -40°C and 150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• simple tension, slow cyclic loading, raw data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• planar tension, slow cyclic loading, raw data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• biaxial tension, slow cyclic loading, raw data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis and Reporting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identification of a suitable hyperelastic function and parameters for FEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identification of parameters for specifying Mullins effect in ABAQUS or ANSYS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordering Instructions:

1) Send **Purchase Order** specifying number of materials and tests to be run, and the email address to which results should be delivered, to:

 Endurica LLC
 jasuter@endurica.com
 1219 West Main Cross, Suite 201
 Findlay, OH 45840
 USA
 Phone: +1-419-957-0543

2) Test specimens are die-cut from customer-provided sheets of approximate dimensions 150 mm x 150 mm x 1-2 mm. Please see the **Fatigue Property Map Material Shipment Form** on the following page for the number of material slabs to send to Axel Products, Inc.

 a. Label each slab with the material identifier you want us to use in reporting.

 b. Complete the **Fatigue Property Map Material Shipment Form** for each material and include it with your material samples.

3) Test execution times may vary, depending on lab backlog and Modules requested. Once testing, analysis and reporting are complete, you will receive an email from Endurica containing the analysis and summary report, and all raw data files.

Notes:

All results delivered via email. The raw data is delivered in an ASCII format. The analysis and summary report is delivered in PDF format.

Customer data and materials will be retained for 1 year after initial data delivery.

Purchase Order, VISA, MasterCard, AMEX, and Discover Card are accepted methods of payment. Terms: NET 30 Days after Delivery of Final Report and Data.
Fatigue Property Map Material Shipment Form

Include one form for each material in your shipment

1) Check the items being requested, and complete the customer specs:

<table>
<thead>
<tr>
<th>Item</th>
<th>Module</th>
<th>Customer Specifications</th>
<th>Slabs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPM-C</td>
<td>Core Fatigue Testing</td>
<td>Test Temp: Test Freq:</td>
<td>5</td>
</tr>
<tr>
<td>FPM-IS</td>
<td>Intrinsic Strength</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>FPM-EL</td>
<td>Extended Life</td>
<td>Ageing Oven Temps (3):</td>
<td>30</td>
</tr>
<tr>
<td>FPM-NR</td>
<td>Nonrelaxing</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>FPM-TH</td>
<td>Thermal Extension</td>
<td>Test Temps (3):</td>
<td>6</td>
</tr>
<tr>
<td>FPM-CCG</td>
<td>Creep Crack Growth</td>
<td>Test Temp:</td>
<td>1</td>
</tr>
<tr>
<td>FPM-SFG</td>
<td>Cyclic Softening</td>
<td>Test Temp:</td>
<td>1</td>
</tr>
<tr>
<td>FPM-H23</td>
<td>Hyperelastic (23 °C)</td>
<td>Peak strain levels:</td>
<td>4</td>
</tr>
<tr>
<td>FPM-HX</td>
<td>Hyperelastic (other temperatures)</td>
<td>Peak strain levels: Test Temp:</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Slabs Sent

Customer Notes:

* Nominal slab dimensions are 150 mm x 150 mm x 2 mm.

2) Attach a business card or write the contact information of the person responsible for specifying this testing.

3) Ship samples to:

Axel Products, Inc.
2255 S. Industrial Hwy.
Ann Arbor MI 48104
USA
Phone: +1-734-994-8308
Fax: +1-734-994-8309
Analysis and Summary Report Examples

Date: 31 January 2013

Elastomer Fatigue Property Evaluation

Contents
Materials Tested ... 1
Executive Summary ... 1
Contents ... 2
Legal Notices ... 2
Summary of Material Parameters ... 3
Discussion .. 3
Index to Delivered Data Files* ... 4
Base Characterization ... 5
Experiment 1: Critical Tearing Energy 5
Experiment 2: Fatigue Crack Growth 6
Experiment 3: Monotonic simple tension, strain to break 8
Experiment 4: Cycles to failure at fixed strain 9
Analysis 1: Crack Growth Law Parameters 10
Analysis 2: Crack Precursor Size Estimate and Computed Strain-Life Curves with Precursor Size Sensitivity Bands ... 10
Nonrelaxing Option .. 13
Experiment 5: Crack Arrest Under Neutzero Minimum Strain .. 15
Analysis 3: Parameters of crystallization law 14
Analysis 4: Hailsh diagram .. 16
Thermal Option .. 18
Experiment 6: Critical Tearing Energy - Additional Temperatures ... 18
Experiment 7: Dynamic Stress-Strain, dependence on temperature .. 18
Experiment 8: Thermal Conductivity, Specific Heat, Density ... 20
Analysis 5: Self-heating rate law .. 20
Analysis 6: Temperature sensitivity coefficient for FCG law ... 21
Analysis 7: Computed temperature-life curve 21
Hyperelastic Option .. 23
Experiment 9: Quasistatic Cyclic Simple Tension 23
Experiment 10: Quasistatic Cyclic Planar Tension 23
Experiment 11: Quasistatic Cyclic Equibiaxial Tension 24
Analysis 8: Hyperelastic Law Parameters 24
Analysis 9: Mullins Effect Parameters 25
Appendix 1: Raw data file contents 28
Appendix 2: Useful Unit Conversions 30

Legal Notices
Disclaimer. Reasonable efforts have been made to deliver the highest quality information. But it is provided "as-is" and we make no warranties as to performance, merchantability, fitness for a particular purpose, or any other warranty, whether expressed or implied. Under no circumstances shall Endurica LLC, or any of its information providers be liable for direct, indirect, special, incidental, or consequential damages resulting from the use or misuse of this information. The entire risk as to the results obtained from using the results reported herein is assumed by the user.

www.endurica.com

Figure 1. Example Table of Contents page for summary report.
Fatigue Property Mapping – Core Module Example Results (FPM-C)

The Core Module gives the basic fatigue crack growth rate curve (Figures 2 and 3), as well as the strain-life curve and crack precursor size (Figure 4). This module is a pre-requisite for any fatigue analysis.

Figure 2. Typical crack tip images collected during fatigue testing. Each contour represents the crack tip shape at a given number of cycles. Colors indicate time, with blue at the beginning of the test, and deep red at the end.

Figure 3. Fatigue crack growth rate observations and model fit parameters.
Fatigue Property Mapping – Intrinsic Strength Module Example Results (FPM-IS)

This module measures the material’s intrinsic strength – the minimum energy release rate required to produce crack growth. Because operation below this limit does not supply sufficient energy to grow a crack, the intrinsic strength is also called the endurance limit. Use this module when the material is expected to serve for a very large number of cycles.

Endurance Limit

Ultimate Strength

Energy Release Rate

Figure 5. The fatigue endurance limit T_0 is the highest energy release rate that can be carried without incurring fatigue crack growth. Its value reflects the intrinsic strength of the polymer chains that must be broken in order to propagate a crack. It is measured via cutting experiments with a highly sharpened, instrumented microtome blade.
Fatigue Property Mapping – Extended Life Module Example Results (FPM-EL)

The extended life module is recommended when the material operates below the endurance limit. Although cracks may not grow due to mechanical fatigue, the material properties may still evolve with exposure to heat history. A series of oven ageing experiments is used to develop master curves showing the evolution of stiffness, intrinsic strength, and fracture strength with time. The protocol also produces an estimate of the activation energy of the Arrhenius rate law describing the time-temperature dependence of ageing in the material.

\[
\frac{k_{\text{ref}}}{k} = e^{\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{ref}}} \right)}
\]

Figure 6. Determination of ageing rate dependence on time and temperature.
Figure 7. Ageing experiments over a 3x3 matrix of oven temperature and time settings are used to develop accelerated degradation curves.
Based on the Arrhenius rate law, the accelerated degradation curves are compiled into a master curve for a specific reference temperature (here, the reference temperature is 23 degC).

Fatigue Property Mapping – Nonrelaxing Module Example Results (FPM-NR)

Under nonrelaxing loads, some elastomers exhibit a strong improvement of fatigue life / retardation of crack growth that is attributed to strain crystallization. The effect can be measured using crack arrest experiments in which a crack growing initially under fully relaxing loads is gradually operated under increasingly nonrelaxing loads. By observing the kinetics of crack arrest, a great deal can be learned about how the effect is impacting fatigue performance. This information is required when constructing rubber’s Haigh diagram for a crystallizing material.

Figure 9. Crack tip images obtained during crack arrest experiments. Red images show the crack tip while growing under fully relaxing conditions. Blue images show the crack tip while growing under nonrelaxing conditions.
Figure 10. Typical strain-crystallization function $x(R)$, showing dependence on the degree of nonrelaxation ratio $R = \frac{T_{\text{min}}}{T_{\text{max}}}$ (where T_{min} and T_{max} are the energy release rate cycle extremes).

Figure 11. Typical Haigh diagram for simple tension/compression loading, computed based on crack growth measurements and crack precursor size inferred from nucleation experiments. Contours are colored and labeled according to the base 10 logarithm of the fatigue crack nucleation life.

Fatigue Property Mapping – Thermal Module Example Results (FPM-TH)

The thermal module produces information useful for cases involving significant self-heating and/or thermal gradients.
Fatigue Property Mapping – Creep Crack Growth Example Results (FPM-CCG)

The creep crack growth rate module produces information useful for cases involving long-term static loads under which time-dependent crack growth (rather than cycle-dependent crack growth) may occur.

Figure 12. Dependence of tearing energy T_c on specimen temperature.

![Graph showing the dependence of tearing energy T_c on specimen temperature.]

Figure 13. Typical crack tip images collected during fatigue testing. Each contour represents the crack tip shape at a given number of cycles. Colors indicate time, with blue at the beginning of the test, and deep red at the end.
Fatigue Property Mapping – Hyperelastic Module Example Results (FPM-H23)

The Hyperelastic Module produces the basic information about nonlinear stress-strain behavior that is needed to obtain a hyperelastic model for use with FEA, and to represent the cyclic softening (Mullins effect) in the FE model.

\[W = \sum_{i=1}^{k} \frac{2\mu_i}{\alpha_i} \left(\bar{\lambda}_i^n + \bar{\lambda}_i^m + \bar{\lambda}_i^\eta - 3 \right) \]

\[\eta = 1 - \frac{1}{r} \text{erf} \left(\frac{\bar{\lambda} - \bar{\lambda}_{\text{max}}}{m + \beta \bar{\lambda}_{\text{max}}} \right) \]

Figure 14. Fatigue crack growth rate observations and model fit parameters.

Figure 15. The lefthand plot shows typical hyperelastic law fit to stress-strain curves measured in simple (blue), planar (green) and equibiaxial (red) tension. Observations are shown with symbols, best fit with solid lines. The righthand plot shows typical Mullins law fit to cyclic stabilized stress-strain curves.
About This Service

The service enables engineers to obtain, from a commercial source, highly reliable, affordable measurements suitable for use in fatigue analysis.

Training on the experimental procedures and analysis for fatigue life prediction is available, see the website below for more information and schedule.

About Endurica LLC

Endurica LLC develops the world’s most versatile and best-validated fatigue life simulation system for elastomers. Through its technology and services, Endurica empowers its customers to analyze real-world fatigue performance of elastomers at the design stage, when the greatest opportunity exists to influence performance, and before investment in costly fatigue testing of prototypes. The company was founded in 2008.

www.endurica.com

About Axel Products

Axel Products provides testing services for engineers and analysts. The focus is on the characterization of nonlinear materials such as elastomers and plastics. Data from the Axel laboratory is often used to develop material models in finite element analysis codes such as ABAQUS, fe-safe/Rubber, MSC.Marc, ANSYS and LS-Dyna. Testing services are also provided to examine sealing and fatigue problems, long term thermal mechanical testing and high strain rate testing. The company was founded in 1994.

www.axelproducts.com