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Extended Abstract 

In this work, we present the Endurica EIETM nonlinear load mapping procedure, which provides a 

means by which the strain/stress histories resulting from full road load signals can now be rapidly 

generated. The procedure utilizes a series of pre-computed finite element solutions to populate a 

nonlinear map relating global load/displacement inputs to local strains/stresses within each finite 

element. For each time step of the full road load signal, the nonlinear map is used to obtain 

stress/strain results via interpolation. Examples are provided for 1-, 2- and 3-channel signal inputs, 

and applied to the following automotive components: a sway bar link, a control arm bushing, and 

a transmission mount. Input signals of several durations were studied as follows: 1000, 10000 and 

100000 time steps.   

The results show that EIE can quickly compute strain histories interpolated from a precomputed 

set of results with an error that can be controlled to a desired accuracy via map discretization.  

EIE’s benefit of efficiently interpolating results becomes more pronounced as signal length 

increases, in this study reaching nearly as high as a 4 orders of magnitude speed-up.  However, 

EIE becomes less efficient as the number of problem dimensions increases (from one dimension 

to three dimensions).  The lower benefit is due to the high cost of producing a higher dimensional 

map of FEA results for EIE to interpolate from. Even in this case, however, as seen for the 3D 

transmission mount analysis, the cost of creating the EIE map is still worthwhile when signal 

length is sufficiently long.   
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Table 1.  Matrix of models, mappings, and signals evaluated.  
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Table 2.  Benchmark results.   

 Life Prediction Error Compute Time 
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