
MATERIAL

Get Durability Right® in your development and analysis projects with our uniquely efficient, reliable, and physics-based testing protocols.

BENEFITS

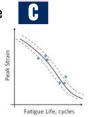
- Material parameters ready to use with durability simulation codes, including Endurica CL™, Endurica DT™, Endurica EIE™. and fe-safe/Rubber™
- Full support for both nucleation $(\varepsilon-N)$ or $(\sigma-N)$ and crack propagation (da/dN) analysis methods.
- Accurate and timely results via uniquely reliable and productive test strategies.
- Reduced risk and cost of development iterations when you take your material's fatigue capabilities into account.
- Leverage your material's full potential by properly aligning its capabilities with the application's demands.

endurica.com

GET DURABILITY RIGHT® WITH ENDURICA'S FATIGUE PROPERTY MAPPING

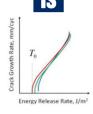
Hyperelastic Module

Provides basic information needed for Finite Element Analysis and initial transient softening (Mullins effect)


- Simple tension
- Planar tension
- Biaxial tension

Core Fatigue Module

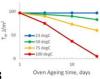
Pre-requisite for any fatigue analyses


- Provides basic fatigue crack growth rate curve
- Strain-life curve
- Crack precursor size

Intrinsic Strength Module

Required for safety factor / infinite life / fatigue limit analysis

Recommended for cases with fatigue life longer than 106 cycles


Ageing Module

Recommended for cases with fatigue

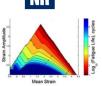
life longer than 106 cycles, and when ageing must be taken into account

AB

- Quantify evolution of stiffness and crack growth parameters
- Quantify Arrhenius Ageing Law parameters

Thermal Modules Quantify dissipative /

gradients



- Basic module for cases involving signficant self-heating or thermal
- Advanced module for improved accuracy in structural and heat transfer analyses
- Thermal Effects module (K/WLF) used to determine strain, temperature and frequency dependence of viscoelastic storage and loss modulus

Non Relaxing Module

Recommended for cases where cyclic minimum loading is greater than zero and material may strain crystallize

Test is run under range of nonrelaxing (R>0) conditions

Ozone Module

Quantify ozone attack critical tearing energy and rate

 Required when rubber is susceptible to ozone attack and operating in environment with ozone

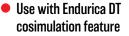
Reliability Module FPM

Recommended when probability of failure needs to be estimated

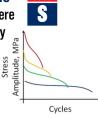
 Weibull analysis parameters relating frequency of occurrence to size of crack precursor

Creep Module

Recommended for


cases involving long periods under static load

Time-dependent crack growth is characterized here (rather than cycledependent crack growth)



Cyclic Softening Module

Recommended for cases where stiffness loss limits durability

Displacement control experiment records the evolution of the peak stress with cycles

C-SUITE INSIGHTS

RIGHT-SIZE YOUR TESTING

Use our modular framework to meet your program requirements, from rapid screening to deep characterization.

LEVERAGE YOUR STRENGTH

Know your material's physics so you can leverage its full capabilities in your application.

PLUG AND PLAY

Our testing modules deliver compatible results that plug right into our fatigue solvers.

SCALE UP YOUR CAPACITY

Planning to implement these in your own lab? Use our testing service to keep product development moving while you scale up.

Endurica LLC 1219 West Main Cross St. Suite 201 Findlay, Ohio 45840 USA +1 419.957.0543 | endurica.com

Learn more

