Wohler Curves or Fracture Mechanics?

Endurica uses a fracture mechanics based description of rubber’s fatigue behavior, rather than the classical Wohler curve (ie S-N curve) approach.  This is why:

1) Wohler curves in rubber show the combined effects of several nonlinear processes, but they do not easily deconvolve into useful information about the individual processes.  This means that Wohler curve users struggle to trace the causes of fatigue failures any deeper than the single monolithic empirical SN curve.  When the customer or the boss asks why the part is failing, Wohler curve users end up falling back on the old “rubber is mysterious” defense.  Meanwhile, users of critical plane analysis + fracture mechanics are hypothesis testing. They can check what events and what loading directions are most damaging, and what material parameters (crack precursor size, strain crystallization, threshold, crack growth rate law, thermal effects, etc.) can be exploited to gain leverage and solve the issue.

2) Fatigue failure in rubber is often dominated by “special effects”: dependence on strain level, dependence on R ratio, dependence on temperature, dependence on rate, dependence on ageing, etc. The Wohler curve crowd must choose between ignoring/oversimplifying these special effects, or running an experimental matrix that rapidly scales to an infeasibly huge size as more variables are added.  While fracture mechanics users obtain a wealth of information from a single test specimen (one test can probe many different strain levels, temperatures, rates, etc), Wohler curve users obtain 1 data point per tested specimen.  Look in the rubber technical literature and count the number of S-N-curves that are given, relative to the number of fatigue crack growth rate curves.  Google/scholar returns less than 2000 results for “rubber Wohler curve”, and 78700 results for “rubber crack growth curve”.  There is a reason that crack growth rate curves outnumber Wohler curves.

3) SN based methods are not conservative. Wohler curve users end up assuming that a crack will show up perpendicular to a max principal stress or strain direction.  This assumption only works when you have the very simplest loading cases, no compression, and no strain crystallization.  Users of fracture mechanics + critical plane analysis don’t worry about whether they have simple loading, finite straining,  out-of-phase loading, compressive loading, changing principal directions, and/or strain crystallization.  Critical plane analysis checks every possible way a crack might develop and is therefore assured to always find the worst case regardless of detailed mechanisms.

4) Wohler curves are messy. They depend strongly on crack precursor size, which naturally varies specimen-to-specimen, batch-to-batch, and between lab mix and factory processes.  During SN curve testing, the size of the crack is neither measured nor controlled.  This accounts for the extra scatter that is typical in these tests.  In fracture mechanics testing, on the other hand, the crack is measured and controlled, leading to more repeatable and reliable results.  Noisy data means that the Wohler curve crowd has trouble differentiating between material or design options.  Users of fracture mechanics benefit from cleaner results that allow more accurate discrimination with less replication.

A Wohler curve does have one valuable use.  The Wohler curve can be used to calibrate the crack precursor size for a fracture mechanics analysis. It only takes a few data points – not the entire curve, since the crack precursor size does not depend on strain level, or other “special effects” variables.  Our recommended practice is to run a small number of nucleation style tests for this purpose only, then leverage fracture mechanics to characterize the special effects.

The bottom line is that, for purposes of general fatigue life prediction in rubber, the Wohler curve method looses technically and economically to the fracture mechanics + critical plane analysis based method that is used in modern fatigue solvers.

twittergoogle_pluslinkedinmail

Fatigue Life Analysis of Free Surfaces

Free surfaces are critical in fatigue analysis because cracks in a physical part tend to form and grow fastest on such surfaces.  Extra care is required when analyzing free surfaces because typical 3D solid finite elements have their worst accuracy at the free surface (gauss points are not located on the free surface, and hydrostatic pressure profile does not conform adequately to element shape function).  Fortunately, the problem is not hard to resolve: free surfaces can easily be skinned with membrane elements.  Membrane elements are specially formulated to produce an exact state of plane stress.

Let’s look at fatigue life predictions that have been computed with a skin of membrane elements, and compare them with predictions computed from the underlying 3D solid elements.

To study the differences in fatigue life calculations, three simple loading cases were used: simple tension, planar tension, and bending. For each case the fatigue life is calculated for both the surface and solid elements.  The results are shown in the table below.

The fatigue life results show that the shortest life always occurred on the free surface. The life for the solid elements varied from 16% to 25% longer than the surface elements. In each case, the critical failure location was on the surface of the part and in the same location for both the solid and surface calculations. The colored contours of fatigue life are shown below for each of the cases.

Figure 1. Fatigue life on simple tension specimen. Isometric view.

 

Figure 2. Fatigue life on planar tension specimen. Cross-section view through the center of the specimen.

 

Figure 3. Fatigue life on bending specimen. Cross-section view through the center of the specimen.

 

Mesh refinement affects the fatigue life results. A mesh refinement study was performed on the bending case. The mesh refinement study consists of the standard mesh model shown above, a coarse mesh model and a fine mesh model. The number of elements in each model triples with each increase in mesh density. The results are shown below.

Figure 4. Mesh Density Analysis on bending specimen.

This mesh density analysis shows that as mesh density increases, the difference in the bulk and surface results decreases. The bulk and surface results converge to a single value. The amount that solid elements on the surface of the part extend into the interior of the part decreases as smaller elements are used. Since the smaller solid elements have a strain history closer to the surface they more closely match the surface element strains and the life results converge to a single value.

Bottom Line:  if you have free surfaces, skin your model with membrane elements for high accuracy results.  Refining your mesh at the surface may help somewhat, but skinning with membranes is far more reliable.

 

 

twittergoogle_pluslinkedinmail
close
Trial License RequestTrial License RequestTrial License RequestTrial License RequestTrial License Request