Solving the Durability Puzzle

Ever thought about what it takes to deliver the durability you expect from products you use? Durability reflects the combined sum of many decisions made all along the supply chain. What sources to use for raw materials? What dimensions and shape for product features? Are there OEM- or customer-imposed design constraints? What load cases occur in manufacturing, shipping, installation, and operation? Manufacturing processes? OEM-specified qualification and / or regulatory testing requirements? What is the warranty or brand promise? If these decisions are not made well, then durability (as well as cost and weight) will suffer.

The people making these decisions come from many backgrounds.  They are chemists, product engineers, testing engineers, structural analysts.  The big challenge is to organize things so that their contributions all add up to the desired end result: getting durability right, preferably on the first try.  It’s a big challenge because the domain expertise and tools in place today in many organizations were largely built before the science was ready and before the workflows were understood well enough to integrate across disciplines.  This situation can make it quite difficult to solve the durability puzzle.  The pieces don’t all fit together!

  • Oversimplified lab tests whose relationship to actual product use is doubtful
  • Fatigue testing instruments that produce noisy data, or execute with uncontrolled test duration
  • Raw materials suppliers struggling to relate chemistry and process improvements to actual impact on end products
  • Compounders making materials selection decisions based on insufficient / poor information
  • Product engineers missing opportunities to fully leverage material capacity
  • Outdated and inaccurate ‘rule of thumb’ engineering that doesn’t work on new cases
  • Incomplete simulation efforts that fail to forecast or diagnose key durability issues
  • Product qualification tests that under- or over-solicit damage or change failure modes
  • Part suppliers leaving OEMs with too little confidence that durability issues have been handled
  • OEMs and part suppliers struggling to account for actual end-use load cases

Endurica-powered workflows overcome these barriers.  Our training, testing services, testing instruments, and CAE software solutions integrate across disciplines.  Our motto is “Get Durability Right”.

Our classes are geared specifically for your compounders, test engineers, product engineers and analysts.  Your compounder doesn’t need to be a mechanical engineer, but she does need to negotiate the demands on the material.  Your product engineer and your analyst don’t need a PhD in chemistry, but they do need to push for performance that will win for the customer.  Your test engineer needs reliable, productive measurement strategies that get the key information that will power up your materials and product development efforts.  Our classes will pay for themselves many times over when your team confronts the next durability pitfall. 

Our testing services and testing instruments produce a complete picture of what limits durability in your application.  Rubber exhibits many ‘special effects’, and our tests are very useful for quantifying each effect, for building material models, and for solving and diagnosing durability issues.  We partner with leading labs around the world to bring you fast and reliable testing for durability simulation.  We partner with testing instrument maker Coesfeld to bring our protocols directly to your own lab with automated, user-friendly control, measurement and data reduction.  Analysts, designers and materials engineers all need clean, abundant, high-relevance measurements. 

Our software (Endurica CL, Endurica DT, Endurica EIE and fe-safe/Rubber) provides the most complete set of durability analysis capabilities in the world.  Total life, incremental damage, residual life, critical plane analysis, rainflow counting, nonlinear loads mapping, road load signal analysis, stiffness loss co-simulation, self-heating – its all here: documented, supported, validated, with examples and a large user-base.  We support the Abaqus, Ansys and MSC/Marc Finite Element solvers.  Use our software to see how different materials, different geometry, different load / use cases impact durability.  If your materials, product, analysis or testing people can ask the question, chances are that our tools will simulate it and give you new insights. 

Durability doesn’t have to be a difficult puzzle.  It costs way too much when people from different disciplines don’t “speak the same language” and try to go forward with conflicting ideas and tools.  Solve the puzzle by using pieces that fit together.  Get your team speaking Endurican!

Keywords: Compounding, Design, Testing, Analysis, Training

twitterlinkedinmail

Will Mars on the Rubber Industry: A Look Back 10 Years, Where We Are Now, A Look Ahead 10 Years

Q: With regards to fatigue life prediction methods, where was the rubber industry 10 years ago?

Will There was plenty of great academic work and good understanding of fundamentals, but the methods were only deployed – if at all – via “homebuilt” solutions that could never support a broad enough audience to really impact daily product design decisions.  Simulation methods and experimental methods shared theoretical foundations but they were poorly integrated.  They suffered from operational problems, noisy data and open-ended test duration.  It was possible to analyze a crack if you could mesh it, but the added bookkeeping and convergence burdens were usually not sustainable in a production engineering context.  Mostly, analysts relied on tradition-based crack nucleation approaches that would look at quantities like strain or stress or strain energy density.  These were not very accurate and they were limiting in many ways, even though they were widely used.  They left companies very dependent on build and break iterations.

Q: Where is the industry today?

Will: The early adopters of our solutions have been off and running now for a number of years.  Our critical plane method has gained recognition for its high accuracy when dealing with multiaxial cases, cases involving crack closure, cases involving strain crystallization.  Our testing methods have gained recognition for high reliability and throughput.  Our users are doing production engineering with our tools.  They are consistently winning on durability issues.  They are handling durability issues right up front when they bid for new business.  They are expanding their in-house labs to increase testing capacity and they are winning innovation awards from OEMs.  They are using actual road-load cases from their customers to design light-weight, just-right parts that meet durability requirements.  The automotive industry has lead adoption but aerospace, tires, energy, and consumer products are also coming up.  We have users across the entire supply chain: raw material suppliers, component producers and OEMs.  The huge value that was locked up because durability was previously so difficult to manage is now unlocked in new ways for the first time.  This has been the wind in Endurica’s sails for the last 10 years.

Q: Where do you see the industry in 10 years?

Will: In 10 years, OEMs will expect durability from all component producers on day 1, even for radical projects.  They will expect designs already optimized for cost and weight.  They will push more warrantee responsibility to the supplier.  They will monitor durability requirements via shared testing and simulation workflows.  Suppliers will pitch solutions using characterization and simulation to show their product working well in your product.  The design and selection of rubber compounds to match applications will enter a golden age as real-world customer usage conditions will finally be taken fully into account.  Where design and selection was previously limited by the budget for a few build and break iterations, and low visibility of design options, they will soon be informed by an almost unlimited evaluation of all possibilities.  Where simulation methods have traditionally had greatest impact on product design functions, we will also start to see rubber part Digital Twins that track damage accumulation and create value in the operational functions of a business.  Durability is definitely set to become a strong arena for competition in the next 10 years.

 twitterlinkedinmail

close
Trial License RequestTrial License RequestTrial License RequestTrial License RequestTrial License Request