Proper tear testing of elastomers: Why you should tear up the Die C tear test

I spent an interesting and rewarding part of my career helping to lead an elastomer technical college in Yanbu, Saudi Arabia. One of the rubber technology words that was challenging for the Saudis to say in English was ‘tear’. They initially pronounced it like the heteronym related to crying. It might be a stretch to say that tears will come to your eyes if you don’t get tear testing of elastomers right, but proper measurement of critical tearing energy (tear strength) is essential for effective materials development for durability.

The fatigue threshold (intrinsic strength; T0) is the lower limit of the fatigue crack growth curve shown in the figure below, and we recently reviewed this material parameter including the various measurement options.1 The upper limit is the tear strength, TC. If loads in your elastomer component are near or above TC, then it is not a fatigue problem anymore but rather a critical tearing issue with imminent product failure. It is therefore important to accurately characterize this durability performance characteristic of your materials.

Endurica uses the planar tension (pure shear) geometry for measuring TC in our Fatigue Property Mapping testing services due to the simple relationship between the strain energy density (W) and the energy release rate (tearing energy, T).2,3 The TC is equal to the W at tearing multiplied by the initial specimen height, h. You can see this geometry below along with other tear testing specimens employed in the rubber industry and specified in the ASTM standard.4

We sometimes get questions from folks with technical backgrounds in metals or plastics about whether rubber tear properties will be different when tested in distinct testing modes (mode I, mode II, etc.). It turns out that the extensibility of rubber causes the deformation to be predominately tension in the tearing region, irrespective of how the crack is opened, such that TC values are similar for rubber evaluated in different testing modes.2,3 Therefore, trouser tear testing is an alternative to the planar tension testing, as long as any stretching of the legs is accounted for in the data analysis.3,5 With no stretching of the legs, TC is simply given by 2F/t where F is the measured force to propagate the tear and t is the thickness of the specimen. The factor of 2 is surprisingly omitted in the ASTM standard4 even though it is mentioned in the appendix. The image below shows how to convert the ASTM trouser tear strength to TC.

A proper tear test includes an initial macroscopic cut/crack in the specimen. This is not the case for Die C tear described in the tear testing standard.4 Die C is thus not a tear test at all but rather is a crack nucleation experiment akin to normal tensile testing of rubber. Because the strange Die C geometry forces failure in a small region in the center of the specimen, it is actually less useful than tensile strength testing of a dumbbell sample which probes the entire gauge region. The Die C test can also have substantial experimental variability related to the sharpness of the die used to punch out the samples. Unfortunately, the Die C “tear” test is the most popular method in the rubber industry to (incorrectly) assess the tear strength of elastomers, and this reality was a key motivator for writing this post. We look forward to seeing the rubber industry shift away from the Die C test, and we hope that the information provided here will help in that path to #GetDurabilityRight.

References

  1. Robertson, C.G.; Stoček, R.; Mars, W.V. The Fatigue Threshold of Rubber and its Characterization Using the Cutting Method. Advances in Polymer Science, Springer, Berlin, Heidelberg, 2020, pp. 1-27.
  2. Lake, G.J. Fatigue and Fracture of Elastomers. Rubber Chem. Technol. 1995, 68, 435-460.
  3. Rivlin, R.S.; Thomas, A.G. Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 1953, 10, 291–318.
  4. Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers. Designation: ASTM D 624-00, ASTM International, West Conshohocken, PA, USA, 2020; pp. 1-9.
  5. Mars, W.V.; Fatemi, A. A literature survey on fatigue analysis approaches for rubber. Int. J. Fatigue 2002, 24, 949–961.
twitterlinkedinmail

Is It Validated?

“Is it validated?” – that’s often the first question we hear after introducing our durability simulation capabilities. And for good reason, given the weight that hangs on the hinge of product durability. Endurica takes verification and validation (V&V) very seriously. Let’s look at what that means.

First, it means that our tools are built on well-known, well-established foundations.  These foundations include 1) definition of material / crack behavior via fracture mechanics (Rivlin and Thomas, 1953), 2) integration of the crack growth rate law to predict fatigue life (Gent, Lindley and Thomas, 1964), 3) the fact that crack precursors occur naturally in all locations and all orientations in a rubber sample (Choi and Roland 1996, Huneau et al 2016), 4) hyperelastic stress-strain laws compatible with commercial FEA codes (see Muhr 2005 for an excellent review), and 5) rubber’s fatigue threshold (Lake and Thomas 1967).  The validation case thus begins with the cumulative authority of thousands of reports that have confirmed these classical results over nearly 70 years.

Critical plane analysis for rubber has now been around for 20+ years, and it has been validated in multiple ways (material level, component level, system level), across multiple experimental programs (industrial and academic), by multiple independent research groups working on multiple applications (see Google/scholar, for example).  It has been validated that: 1) it correctly predicts crack plane orientation under uniaxial, proportional and nonproportional loadings (Harbour et al 2008), 2) it correctly predicts fatigue life across different modes of deformation (Mars 2002), 3) it correctly accounts for the effects of crack closure (Mars 2002), 4) it correctly predicts the development of off-axis cracks for nonrelaxing cycles in strain-crystallizing materials (Ramachandran 2017), 5) it correctly predicts the effects of finite straining on crack orientation (Mars and Fatemi 2006).

The literature is full of old experiments that we have used as validation targets.  We have validated Endurica’s strain crystallization models by simulating experimental results published by Cadwell et al (1940) and by Fielding et al (1943).  We have validated the ability to predict deformation mode effects by simulating experimental results for simple and biaxial tension published by Roberts and Benzies (1977).  We have validated Endurica’s temperature dependence against measurements reported by Lake and Lindley (1964).  We have validated against multiaxial fatigue experiments reported by Saintier, Cailletaud and Piques (2006).

We’ve done our own validation experiments.  My PhD dissertation (University of Toledo, 2001) contains an extensive database of tension/torsion/compression fatigue tests against which our critical plane algorithms were validated.  Two additional PhD dissertations that I co-advised generated additional validations.  Dr. Malik Ait Bachir’s thesis (2010) validated mathematically that the scaling law we use for small cracks is valid across all multiaxial loading states.  Dr. Ryan Harbour’s thesis (2006) contains a database of multiaxial, variable amplitude fatigue experiments against which our rainflow and damage accumulation procedures were extensively validated.

Validation from partners.  We partner with several testing labs.  We have invested in testing protocols that produce clean, accurate data and we have run validation programs with our partners to verify the effectiveness of our testing protocols.  We’ve demonstrated significant improvements to test efficiency and reproducibility (Goosens and Mars 2018) and (Mars and Isasi 2019).  We’ve validated techniques for estimating precursor size and size distribution (Robertson et al 2020, Li et al 2015).

Validation from users.  Three (3) of the top 12 tire companies and six (6) of the top 10 global non-tire rubber companies now use our solutions.  Most of our users have run internal validation programs to show the effectiveness of our solutions for their applications.  Most of these studies are unpublished, but the fact that our user base has continued growing at ~20%/year for 12 years (as of this year) says something important both about the technical validation case and the business validation case.  Validation studies have been published with the US Army (Mars, Castanier, Ostberg 2017), GM (Barbash and Mars 2016), Tenneco (Goossens et al 2017) and Caterpillar (Ramachandran et al 2017).

Validation from external groups.  There are several academic groups that have independently applied and validated components of our approach.  There are too many to list completely, but a few recent examples include Zarrin-Ghalami et al (2020), Belkhira et al (2020) and Tobajas et al (2020).

Software verification, benchmarking and unit testing.  In addition to the experimental validations mentioned above, each time we build a new version of our software, we execute a series of automated tests.  These tests verify every line of code against expected function, and they ensure that as we add new features, we do not introduce unintended changes.  The benchmarks include tests that verify things like coordinate frame objectivity (rigid rotations under static load should do no damage and the same strain history written in two different coordinate systems should have the same life), and check known results pertaining to material models and cycle counting rules.  You can read more about our software quality processes here.

It is safe to say that no other solution for fatigue life prediction of rubber has been tested and validated against a larger number of applications than Endurica’s.

References

Aıt-Bachir, M. “Prediction of crack initiation in elastomers in the framework of Configurational Mechanics.” PhD diss., Ph. D. thesis, Ecole Centrale de Nantes, Nantes (France), 2010.

Barbash, Kevin P., and William V. Mars. Critical plane analysis of rubber bushing durability under road loads. No. 2016-01-0393. SAE Technical Paper, 2016.

Belkhiria, Salma, Adel Hamdi, and Raouf Fathallah. “Cracking energy density for rubber materials: Computation and implementation in multiaxial fatigue design.” Polymer Engineering & Science (2020).

Cadwell, S. M., R. A. Merrill, C. M. Sloman, and F. L. Yost. “Dynamic fatigue life of rubber.” Rubber Chemistry and Technology 13, no. 2 (1940): 304-315.

Choi, I. S., and C. M. Roland. “Intrinsic defects and the failure properties of cis-1, 4-polyisoprenes.” Rubber chemistry and technology 69, no. 4 (1996): 591-599.

Fielding, J. H. “Flex life and crystallization of synthetic rubber.” Industrial & Engineering Chemistry 35, no. 12 (1943): 1259-1261.

Goossens, J.R., Mars, W., Smith, G., Heil, P., Braddock, S. and Pilarski, J., 2017. Durability Analysis of 3-Axis Input to Elastomeric Front Lower Control Arm Vertical Ride Bushing (No. 2017-01-1857). SAE Technical Paper. https://doi.org/10.4271/2017-01-1857

Goossens, Joshua R., and William V. Mars. “Finitely Scoped, High Reliability Fatigue Crack Growth Measurements.” Rubber Chemistry and Technology 91, no. 4 (2018): 644-650. https://doi.org/10.5254/rct.18.81532

Harbour, Ryan Joseph. Multiaxial deformation and fatigue of rubber under variable amplitude loading. Vol. 67, no. 12. 2006.

Harbour, Ryan J., Ali Fatemi, and Will V. Mars. “Fatigue crack orientation in NR and SBR under variable amplitude and multiaxial loading conditions.” Journal of materials science 43, no. 6 (2008): 1783-1794.

Huneau, Bertrand, Isaure Masquelier, Yann Marco, Vincent Le Saux, Simon Noizet, Clémentine Schiel, and Pierre Charrier. “Fatigue crack initiation in a carbon black–filled natural rubber.” Rubber Chemistry and Technology 89, no. 1 (2016): 126-141.

Lake, G. J., and P. B. Lindley. “Cut growth and fatigue of rubbers. II. Experiments on a noncrystallizing rubber.” Journal of Applied Polymer Science 8, no. 2 (1964): 707-721.

Li, Fanzhu, Jinpeng Liu, W. V. Mars, Tung W. Chan, Yonglai Lu, Haibo Yang, and Liqun Zhang. “Crack precursor size for natural rubber inferred from relaxing and non-relaxing fatigue experiments.” International Journal of Fatigue 80 (2015): 50-57.

Mars, William Vernon. Multiaxial fatigue of rubber. 2001.

Mars, Will V. “Cracking energy density as a predictor of fatigue life under multiaxial conditions.” Rubber chemistry and technology 75, no. 1 (2002): 1-17.

Mars, W. V., and A. Fatemi. “Analysis of fatigue life under complex loading: Revisiting Cadwell, Merrill, Sloman, and Yost.” Rubber chemistry and technology 79, no. 4 (2006): 589-601.

Mars, W. V., and A. Fatemi. “Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading.” Journal of materials science 41, no. 22 (2006): 7324-7332.

Mars, W. V. “Computed dependence of rubber’s fatigue behavior on strain crystallization.” Rubber Chemistry and Technology 82, no. 1 (2009): 51-61. https://doi.org/10.5254/1.3557006

Mars, William V., Matthew Castanier, David Ostberg, and William Bradford. “Digital Twin for Tank Track Elastomers: Predicting Self-Heating and Durability.” In Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS). 2017.pdf here

Mars, W. V., and M. Isasi. “Finitely scoped procedure for generating fully relaxing strain-life curves.” In Constitutive Models for Rubber XI: Proceedings of the 11th European Conference on Constitutive Models for Rubber (ECCMR 2019), June 25-27, 2019, Nantes, France, p. 435. CRC Press, 2019.

Muhr, A. H. “Modeling the stress-strain behavior of rubber.” Rubber chemistry and technology 78, no. 3 (2005): 391-425.Lake and Thomas 1967

Ramachandran, Anantharaman, Ross P. Wietharn, Sunil I. Mathew, W. V. Mars, and M. A. Bauman. “Critical Plane Selection Under Nonrelaxing Simple Tension with Strain Crystallization.” In Fall 192nd Technical Meeting of the Rubber Division, pp. 10-12. 2017.

Rivlin, R. S., and A. G. Thomas. “Rupture of rubber. I. Characteristic energy for tearing.” Journal of polymer science 10, no. 3 (1953): 291-318.Gent, Lindley and Thomas, 1964

Roberts, B. J., and J. B. Benzies. “The relationship between uniaxial and equibiaxial fatigue in gum and carbon black filled vulcanizates.” Proceedings of rubbercon 77, no. 2 (1977): 1-13.

Robertson, Christopher G., Lewis B. Tunnicliffe, Lawrence Maciag, Mark A. Bauman, Kurt Miller, Charles R. Herd, and William V. Mars. “Characterizing Distributions of Tensile Strength and Crack Precursor Size to Evaluate Filler Dispersion Effects and Reliability of Rubber.” Polymers 12, no. 1 (2020): 203. Pdf here

Saintier, Nicolas, Georges Cailletaud, and Roland Piques. “Multiaxial fatigue life prediction for a natural rubber.” International Journal of Fatigue 28, no. 5-6 (2006): 530-539.

Tobajas, Rafael, Daniel Elduque, Elena Ibarz, Carlos Javierre, and Luis Gracia. “A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials.” Polymers 12, no. 5 (2020): 1194.

Zarrin-Ghalami, Touhid, Sandip Datta, Robert Bodombo Keinti, and Ravish Chandrashekar. Elastomeric Component Fatigue Analysis: Rubber Fatigue Prediction and Correlation Comparing Crack Initiation and Crack Growth Methodologies. No. 2020-01-0193. SAE Technical Paper, 2020.

 

twitterlinkedinmail

Durability Insights from the ISA for Tire Tread Compound Development

My last blog post (Getting a Quick Read on Durability with the Intrinsic Strength Analyser) highlighted a one-hour test on the Intrinsic Strength Analyser (ISA) to screen elastomer materials for long-term fatigue performance, with applications in materials R&D and plant mixing quality control. To illustrate the use of this approach for rubber compound development, we recently had the opportunity to collaborate with Dr. Nihat Isitman from Goodyear Tire & Rubber Company in Akron, Ohio and Dr. Radek Stoček from Polymer Research Laboratory in Zlín, Czech Republic.1 Dr. Isitman led this project and was scheduled to present our research at the Spring 2020 Technical Meeting of the ACS Rubber Division, but the meeting was cancelled due to COVID-19 precautions. Instead, the Rubber Division is offering the content online, and the meeting presentations are available here for a modest fee.

Our study considered model tread compounds based on the well-known green tire formulation, which is a compatible blend of solution styrene-butadiene rubber (SBR) and high-cis butadiene rubber (BR) that is reinforced with a silica-silane system for low rolling resistance (improved fuel economy) passenger tires. Additional production compounds used in actual tire treads were also tested, but the proprietary results for these materials were not included in the public presentation. The SBR/BR ratio, silica loading, and crosslink density were all varied in this investigation. For each rubber formulation, the ISA was used to measure the fatigue threshold (T0) and critical tearing energy (tear strength; Tc), which bracket the two ends of the fatigue crack growth curve as shown below.

The established cutting method of Lake and Yeoh2,3 is used for assessing T0 on the ISA, and the one-hour test on this benchtop instrument is concluded with a tearing procedure to measure Tc. The ISA is manufactured by Coesfeld GmbH & Co. in Dortmund, Germany, and distributed in the Americas by Endurica LLC (see photo).

The slide image below summarizes the key findings of this research collaboration. Optimization of T0 and Tc is possible thanks to different sensitivities to the various compounding variables. It is important to measure both fatigue threshold and tear strength to quantify durability potential of rubber materials, and the ISA is an efficient and effective instrument for these measurements. To learn more about this testing equipment for the rubber lab, please contact me at cgrobertson@endurica.com.

References

  1. N. Isitman, R. Stoček, and C. G. Robertson, “Influences of compounding attributes on intrinsic strength and tearing behavior of model tread rubber compounds”, paper scheduled to be presented at the 197th Technical Meeting of the Rubber Division, ACS, Independence, OH, April 28-30, 2020 (online presentation due to meeting cancellation).
  2. G. J. Lake and O. H. Yeoh, “Measurement of Rubber Cutting Resistance in the Absence of Friction”, International Journal of Fracture 14, 509 (1978).
  3. C. G. Robertson, R. Stoček, C. Kipscholl, and W. V. Mars, “Characterizing the Intrinsic Strength (Fatigue Threshold) of Natural Rubber/Butadiene Rubber Blends”, Tire Sci. Technol. 47, 292 (2019).
twitterlinkedinmail

Getting a Quick Read on Durability with the Intrinsic Strength Analyser

There is now a one-hour test on a benchtop instrument for the rubber lab to screen materials for long-term fatigue performance. Please continue reading to learn more about this commercialization of a classical elastomer characterization methodology.

Rubber products manufacturers and raw materials suppliers seeking improved materials for next-generation applications depend on lab tests to predict end-use performance. These predictive tests should balance accuracy, relevance, and testing time. The testing time component is particularly challenging when the performance characteristic of interest is fatigue lifetime. The image of traditional fatigue testers chattering along for days or weeks comes to mind for those of us with experience in industrial rubber labs. The time consideration is the reason why tensile stress-strain testing (stretching a material to high strains until failure) is the most common physical test for the fracture behavior of rubber, in clear contrast to the most prevalent application condition for rubber products which is cyclic loading (fatigue) at much lower strains.

Fatigue crack growth is a key element of elastomer behavior that must be determined in order to predict durability, as illustrated below. For example, fatigue crack growth (FCG) testing provides the FCG rate law that is essential for predicting when and where cracks will show up in rubber products using Endurica’s elastomer fatigue software for finite element analysis [https://endurica.com/integrated-durability-solutions-for-elastomers/]. Endurica has developed a finitely scoped, reduced variability measurement approach1 which is used in our Fatigue Property Mapping testing services and is available on the Coesfeld Tear and Fatigue Analyser (TFA). Our standard FCG measurement protocol takes 20 hours of continuous testing. This testing time is very efficient for characterizing best candidate materials in the development process, but a faster test is needed for narrowing down, for example, 20 initial materials to 5 best candidates or for use in a plant lab to monitor quality of rubber compounding processes.

The Intrinsic Strength Analyser (ISA) is a recent addition to the durability testing solutions for elastomers. The ISA was developed through a partnership between Coesfeld GmbH & Co. (Dortmund, Germany) and Endurica LLC (Findlay, OH, USA), and this benchtop instrument employs a testing protocol based on the long-established cutting method of Lake and Yeoh.3,4 Endurica’s president, Dr. Will Mars, discusses the importance of measuring intrinsic strength (fatigue threshold) in this video on our YouTube channel which also shows some footage of the ISA in operation:

https://www.youtube.com/watch?v=BL92ppsJZfE

The fatigue crack growth curve of rubbery materials is bounded by the fatigue threshold, T0, on the low tearing energy (T) side and by the critical tearing energy (tear strength), Tc, at the high-T end. This is depicted in the generalized figure below. A streamlined one-hour procedure on the ISA can measure both T0 and Tc which can then be used to estimate the slope (F) of the intermediate FCG power law response that correlates well with the actual F from rigorous FCG testing using the TFA (see figure). More information about this quick ISA approach to characterizing rubber crack growth behavior for materials development and quality control can be found in the Annual Review 2019 issue of Tire Technology International (open access).2

The fatigue crack growth slope, F, from the ISA should be considered an approximate value that is useful for comparing the relative FCG behavior of materials. However, the determination of T0 on the ISA is highly quantitative and the only realistic option for assessing this parameter, since the near-threshold crack growth testing on the TFA needed to define T0 would take about a month. The implementation areas for the ISA and TFA are compared in the following table. A very conservative approach to product development for elastomer durability is to create a combination of material behavior and component design that places the final operation of the rubber product below the fatigue threshold. If this is your company’s approach to engineering for durability, then the ISA is the testing instrument you need.

Crack precursor size is another key characteristic of elastomers that needs to be quantified in order to predict durability. In combination with a standard tensile stress-strain test, the critical tearing energy (Tc) from the ISA can also be used to assess crack precursor size, as we showed recently in an open access publication.5

Endurica is the exclusive Americas distributor of the Coesfeld ISA and TFA instruments. Endurica’s efficient and effective testing protocols are provided on these high-quality instruments for the rubber laboratory. To learn more about how to add these testing capabilities to your lab, please contact me at cgrobertson@endurica.com.

References

  1. J. R. Goossens and W. V. Mars, “Finitely Scoped, High Reliability Fatigue Crack Growth Measurements”, Rubber Chem. Technol. 91, 644 (2018).
  2. C. G. Robertson, R. Stoček, R. Kipscholl, and W. V. Mars, “Characterizing Durability of Rubber for Tires”, Tire Technology International, Annual Review 2019, pp. 78-82.
  3. G. J. Lake and O. H. Yeoh, “Measurement of Rubber Cutting Resistance in the Absence of Friction”, International Journal of Fracture 14, 509 (1978).
  4. C. G. Robertson, R. Stoček, C. Kipscholl, and W. V. Mars, “Characterizing the Intrinsic Strength (Fatigue Threshold) of Natural Rubber/Butadiene Rubber Blends”, Tire Sci. Technol. 47, 292 (2019).
  5. C. G. Robertson, L. B. Tunnicliffe, L. Maciag, M. A. Bauman, K. Miller, C. R. Herd, and W. V. Mars, “Characterizing Distributions of Tensile Strength and Crack Precursor Size to Evaluate Filler Dispersion Effects and Reliability of Rubber”, Polymers 12, 203 (2020).
twitterlinkedinmail

Fatigue Property Mapping 2.0

Fatigue Property Mapping Logo

We have just launched a few updates to our Fatigue Property Mapping service offerings.  The changes were:

  1. Addition of the all new Reliability Module for those needing to compute probability of failure in addition to fatigue life. The module gives you Weibull parameters to describe the statistical distribution of crack precursor sizes in your material.
  2. Addition of a pressure-volume test as an optional add-on to the hyperelastic module. Use this add-on when your rubber is loaded under high confinement to the point where its compressibility must be treated more accurately.  If the hydrostatic pressure is more than 5% of the bulk modulus, then this option makes sense.
  3. Split of the original Thermal Module in two components: a Basic Thermal Module and an Advanced Thermal Add-on Module. The Basic Thermal Module provides a dynamic strain sweep to quantify dissipation (for use in computing temperature distribution via FEA) and also provides the temperature sensitivity coefficient on the crack growth rate law.  The advanced module provides thermal transport properties (conductivity, specific heat), thermal expansion coefficient (for computing thermal pre-stresses), and additional data points for the dissipation and crack growth rate laws.
  4. Split of the original Extended Life (Ageing) Module into two parts: a Basic Ageing Module and a Master Curve Module. The basic module includes characterization of unaged and aged samples for stiffness, critical fracture energy, and intrinsic strength.  The oven exposure time and temperature for the aged sample is specified by the client, or can be set by Endurica based upon a client-specified life target.  The Full Master Curve Module gives both the Arrhenius law activation energy and a master curve showing how stiffness, critical fracture energy and intrinsic strength depend on exposure time and temperature.

Most prices have remained the same, except for the Thermal and Ageing modules.  The Thermal and Ageing modules have now been significantly streamlined, so that we now offer service at a lower price.

The new price list and specifications can be found here.

twitterlinkedinmail

Solving the Durability Puzzle

Ever thought about what it takes to deliver the durability you expect from products you use? Durability reflects the combined sum of many decisions made all along the supply chain. What sources to use for raw materials? What dimensions and shape for product features? Are there OEM- or customer-imposed design constraints? What load cases occur in manufacturing, shipping, installation, and operation? Manufacturing processes? OEM-specified qualification and / or regulatory testing requirements? What is the warranty or brand promise? If these decisions are not made well, then durability (as well as cost and weight) will suffer.

The people making these decisions come from many backgrounds.  They are chemists, product engineers, testing engineers, structural analysts.  The big challenge is to organize things so that their contributions all add up to the desired end result: getting durability right, preferably on the first try.  It’s a big challenge because the domain expertise and tools in place today in many organizations were largely built before the science was ready and before the workflows were understood well enough to integrate across disciplines.  This situation can make it quite difficult to solve the durability puzzle.  The pieces don’t all fit together!

  • Oversimplified lab tests whose relationship to actual product use is doubtful
  • Fatigue testing instruments that produce noisy data, or execute with uncontrolled test duration
  • Raw materials suppliers struggling to relate chemistry and process improvements to actual impact on end products
  • Compounders making materials selection decisions based on insufficient / poor information
  • Product engineers missing opportunities to fully leverage material capacity
  • Outdated and inaccurate ‘rule of thumb’ engineering that doesn’t work on new cases
  • Incomplete simulation efforts that fail to forecast or diagnose key durability issues
  • Product qualification tests that under- or over-solicit damage or change failure modes
  • Part suppliers leaving OEMs with too little confidence that durability issues have been handled
  • OEMs and part suppliers struggling to account for actual end-use load cases

Endurica-powered workflows overcome these barriers.  Our training, testing services, testing instruments, and CAE software solutions integrate across disciplines.  Our motto is “Get Durability Right”.

Our classes are geared specifically for your compounders, test engineers, product engineers and analysts.  Your compounder doesn’t need to be a mechanical engineer, but she does need to negotiate the demands on the material.  Your product engineer and your analyst don’t need a PhD in chemistry, but they do need to push for performance that will win for the customer.  Your test engineer needs reliable, productive measurement strategies that get the key information that will power up your materials and product development efforts.  Our classes will pay for themselves many times over when your team confronts the next durability pitfall. 

Our testing services and testing instruments produce a complete picture of what limits durability in your application.  Rubber exhibits many ‘special effects’, and our tests are very useful for quantifying each effect, for building material models, and for solving and diagnosing durability issues.  We partner with leading labs around the world to bring you fast and reliable testing for durability simulation.  We partner with testing instrument maker Coesfeld to bring our protocols directly to your own lab with automated, user-friendly control, measurement and data reduction.  Analysts, designers and materials engineers all need clean, abundant, high-relevance measurements. 

Our software (Endurica CL, Endurica DT, Endurica EIE and fe-safe/Rubber) provides the most complete set of durability analysis capabilities in the world.  Total life, incremental damage, residual life, critical plane analysis, rainflow counting, nonlinear loads mapping, road load signal analysis, stiffness loss co-simulation, self-heating – its all here: documented, supported, validated, with examples and a large user-base.  We support the Abaqus, Ansys and MSC/Marc Finite Element solvers.  Use our software to see how different materials, different geometry, different load / use cases impact durability.  If your materials, product, analysis or testing people can ask the question, chances are that our tools will simulate it and give you new insights. 

Durability doesn’t have to be a difficult puzzle.  It costs way too much when people from different disciplines don’t “speak the same language” and try to go forward with conflicting ideas and tools.  Solve the puzzle by using pieces that fit together.  Get your team speaking Endurican!

Keywords: Compounding, Design, Testing, Analysis, Training

twitterlinkedinmail

Will Mars on the Rubber Industry: A Look Back 10 Years, Where We Are Now, A Look Ahead 10 Years

Q: With regards to fatigue life prediction methods, where was the rubber industry 10 years ago?

Will There was plenty of great academic work and good understanding of fundamentals, but the methods were only deployed – if at all – via “homebuilt” solutions that could never support a broad enough audience to really impact daily product design decisions.  Simulation methods and experimental methods shared theoretical foundations but they were poorly integrated.  They suffered from operational problems, noisy data and open-ended test duration.  It was possible to analyze a crack if you could mesh it, but the added bookkeeping and convergence burdens were usually not sustainable in a production engineering context.  Mostly, analysts relied on tradition-based crack nucleation approaches that would look at quantities like strain or stress or strain energy density.  These were not very accurate and they were limiting in many ways, even though they were widely used.  They left companies very dependent on build and break iterations.

Q: Where is the industry today?

Will: The early adopters of our solutions have been off and running now for a number of years.  Our critical plane method has gained recognition for its high accuracy when dealing with multiaxial cases, cases involving crack closure, cases involving strain crystallization.  Our testing methods have gained recognition for high reliability and throughput.  Our users are doing production engineering with our tools.  They are consistently winning on durability issues.  They are handling durability issues right up front when they bid for new business.  They are expanding their in-house labs to increase testing capacity and they are winning innovation awards from OEMs.  They are using actual road-load cases from their customers to design light-weight, just-right parts that meet durability requirements.  The automotive industry has lead adoption but aerospace, tires, energy, and consumer products are also coming up.  We have users across the entire supply chain: raw material suppliers, component producers and OEMs.  The huge value that was locked up because durability was previously so difficult to manage is now unlocked in new ways for the first time.  This has been the wind in Endurica’s sails for the last 10 years.

Q: Where do you see the industry in 10 years?

Will: In 10 years, OEMs will expect durability from all component producers on day 1, even for radical projects.  They will expect designs already optimized for cost and weight.  They will push more warrantee responsibility to the supplier.  They will monitor durability requirements via shared testing and simulation workflows.  Suppliers will pitch solutions using characterization and simulation to show their product working well in your product.  The design and selection of rubber compounds to match applications will enter a golden age as real-world customer usage conditions will finally be taken fully into account.  Where design and selection was previously limited by the budget for a few build and break iterations, and low visibility of design options, they will soon be informed by an almost unlimited evaluation of all possibilities.  Where simulation methods have traditionally had greatest impact on product design functions, we will also start to see rubber part Digital Twins that track damage accumulation and create value in the operational functions of a business.  Durability is definitely set to become a strong arena for competition in the next 10 years.

 twitterlinkedinmail

close
Trial License RequestTrial License RequestTrial License RequestTrial License RequestTrial License Request

Our website uses cookies. By agreeing, you accept the use of cookies in accordance with our cookie policy.  Continued use of our website automatically accepts our terms. Privacy Center